Organic Chemistry

Synthesis of 3-alkoxy-2-nitroxypropyl-N-alkylnitramines

V. A. Tartakovsky, A. S. Ermakov, and D. B. Vinogradov*

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 117913 Moscow, Russian Federation. Fax: 007 (095) 135 5328. E-mail: SECRETARY@ioc.ac.ru

It was shown that 3-alkoxy-2-nitroxypropyl-N-alkylnitramines can be prepared by nitration of the corresponding 3-alkoxy-2-hydroxypropyl-N-alkylsulfamates.

Key words: *N*-alkylsulfamates; epichlorohydrin; glycidyl ethers; 3-alkoxy-2-hydroxypropyl-*N*-alkylsulfamates; 3-alkoxy-2-nitroxypropyl-*N*-alkylnitramines.

Previously, 1 it has been shown that 3-alkoxy-2-hydroxy-N-alkylsulfamates (1) can be synthesized by the reaction of N-alkylsulfamates with glycidyl ethers in aqueous ethanol.

$$M = K$$
, Na
 $R = Me$; $R' = Me$ (a), Et (b), Bu (c);
 $R = Et$; $R' = Me$ (d), Et (e), Bu (f);
 $R = Bu$; $R' = Me$ (g), Et (h);
 $R = Hept$; $R' = Me$ (i)

To exclude the formation of side products resulting from hydrolysis (2), this reaction was studied in anhydrous DMSO (8 h at 110 to 120 °C). However, in this case, it was accompanied by resinification, and the yield of the target product remained the same, viz., ~80%.

To make the preparation of compounds 1 easier, we considered the possibility of the reaction of 3-chloro-2-hydroxy-N-alkylsulfamates (3) with alcohols in alkaline media; to avoid hydrolysis involving the chlorine atom, anhydrous alcohols were used. In this case, the yields of products 1 reached ~85% (Table 1).

M = K, Na

Table 1. Synthesis of 3-alkoxy-2-hydroxy-N-alkylsulfamates (1)

Com- pound	Yield (%)	M.p. /°C		
1a	85	9395		
1b	80	8486		
1e	77	9395		
1ga	60	b		
$1b^c$	82	8486		

^a Prepared by the standard procedure.¹
^b A caramel-like product ^c Prepared in DMSO by a previously described procedure.¹

Nitration of compounds 1 gave nitramino nitrates (4).

OH

$$RNCH_2CHCH_2OR$$
 HNO_3
 $RNCH_2CHCH_2OR$
 NO_2
 NO_2
 NO_2
 NO_2

M = K, Na

As has been reported previously,² the sulfamate group can be easily converted into a nitramine group by nitra-

Table 2. Characteristics of 3-alkoxy-2-nitroxypropyl-N-alkylnitramines (4)

Com- pound	Yield (%)	$n_{\rm D}^{22}$	Molecular formula	Found (%) Calculated		(%)	¹ H NMR (δ)
				C	Н	N	
4 a	71	а	C ₅ H ₁₁ N ₃ O ₆	29.17 28.71	5.48 5.78		3.35 (s, 3 H, MeO); 3.45(s, 3 H, MeN); 3.70 (m, 2 H, CH ₂ N) 4.20 (m, 2 H, CH ₂ O); 5.60 (m, 1 H, CHONO ₂)
4b	70	1.4780	$C_6H_{13}N_3O_6$	31.95 32.28	<u>5.78</u> 5.87		1.15 (t, 3 H, MeC); 3.45 (s, 3 H, MeN); 3.55 (m, 2 H, CH ₂ O)
4b ^b	75						3.75 (m, 2 H, CH ₂ N); 4.25 (m, 2 H, CH ₂ O); 5.60 (m, 1 H, CHONO ₂)
4c	67	1.4687	$C_3H_{17}N_3O_6$	_	_	16.55 16.80	0.95 (t, 3 H, Me); 1.35 (m, 2 H, CH ₂); 1.55 (m, 2 H, CH ₂)
4c ^b	55						3.50 (s, 3 H, MeN); 3.70 (t, 2 H, CH ₂ O); 3.90 (m, 2 H, CH ₂ N); 4.30 (m, 2 H, CH ₂ O); 5.55 (m, 1 H, CHONO ₂)
4d	71	1.4740	$C_6H_{13}N_3O_6$	32.86 32.28	6.14 5.87		1.25 (t, 3 H, MeC); 3.45 (s, 3 H, CH ₃ O); 3.72 (m, 2 H, CH ₂ N); 3.85 (m, 2 H, CH ₂ N); 4.15 (m, 2 H, CH ₂ O); 5.60 (m, 1 H, CHONO ₂)
4e	68	1.4693	$C_7H_{15}N_3O_6$	35.44 35.44	6.39 6.37		1.15 (t, 3 H, Me); 1.25 (t, 3 H, MeC); 3.55 (m, 2 H, CH ₂ O); 3.70—3.95 (m, 4 H, CH ₂ NCH ₂); 4.15 (m, 2 H, CH ₂ O); 5.70 (m, 1 H, CHONO ₂)
4f	67	1.4656	C ₉ H ₁₉ N ₃ O ₆			16.29 15.84	1.05 (t, 3 H, MeC); 1.35 (t, 3 H, MeC); 1.50 (m, 2 H, CH ₂); 1.70 (m, 2 H, CH ₂); 3.60 (m, 2 H, CH ₂ O); 3.70—3.95 (m, 4 H, CH ₂ NCH ₂); 4.15 (m, 2 H, CH ₂ O); 5.70 (m, 1 H, CHONO ₂)
4g ^c	55	1.4707	C ₈ H ₁₇ N ₃ O ₆	_	-	_	0.95 (t, 3 H, Me); 1.35 (m, 2 H, CH ₂); 1.56 (m, 2 H, CH ₂); 3.35 (s, 3 H, MeO); 3.70—3.95 (m, 4 H, CH ₂ NCH ₂); 4.15 (m, 2 H, CH ₂ O); 5.70 (m, H, CHONO ₂)
4h	69	1.4655	C ₉ H ₁₉ N ₃ O ₆	<u>41.29</u> 40.75	7.26 7.22		0.95 (t, 3 H, Me); 1.15 (t, 3 H, MeC); 1.35 (m, 2 H, CH ₂); 1.65 (m, 2 H, CH ₂); 3.50 (m, 2 H, CH ₂ O); 3.70—3.95 (m, 4 H, CH ₂ NCH ₂); 4.15 (m, 2 H, CH ₂ O); 5.70 (m, 1 H, CHONO ₂)
4 i	60	1.4665	C ₁₁ H ₂₃ N ₃ O ₆	45.10 45.04	8.36 7.90		0.90 (t, 3 H, MeC); 1.35 (m, 8 H, (CH ₂) ₄); 1.70 (m, 2 H, CH ₂); 3.40 (s, 3 H, MeO); 3.70—3.95 (m, 4 H, CH ₂ NCH ₂); 4.15 (m, 2 H, CH ₂ O); 5.70 (m, 1 H, CHONO ₂)

^a M.p. 40-41 °C. ^b Prepared by nitration with an HNO₃-H₂SO₄ mixture. ^c The starting compound was first dissolved in (MeCO)₂O, and then HNO₃ was added to the solution.

tion. The nitration of 1b with a $HNO_3-H_2SO_4$ mixture gave compound 4b in a yield of ~75%. However, an increase in the length of the alkoxyl radical (compound 4c) results in an increase in the rate of nitrolysis, and the yield of the desired compound decreases to 55%. Therefore, a milder nitrating reagent, viz, an $HNO_3-(MeCO)_2O$ mixture, was used. In this case, the proportion of the products of nitrolysis was $\leq 3\%$, and the yields of the target products were 60-71%. The resulting compounds 4 were characterized by 1H NMR spectroscopy and by elemental analysis (Table 2).

3-Alkoxy-2-nitroxypropyl-N-alkylnitramines

Experimental

¹H NMR spectra were recorded on Bruker WM-250 and Bruker AM-300 instruments (250 and 300 MHz) in D₂O, (CD₃)₂CO, and CDCl₃ using HMDS as the internal standard.

Condensation of potassium N-butylsulfamate with 1-methoxy-2,3-epoxypropane (1g). 1-Methoxy-2,3-epoxypropane (2.1 g, 24 mmol) was added to a solution of potassium N-butylsulfamate (3.51 g, 18 mmol) in a mixture of 3.37 mL of H₂O and 5.4 mL of EtOH at pH 6.96. The reaction mixture was kept for 30 h at 68-70 °C and concentrated on a rotary evaporator. The residue was extracted with a hot Me₂CO-EtOH mixture (2:1) to remove the remaining potassium N-butylsulfamate. The extract was concentrated on a rotary evaporator, and the residue was recrystallized from a Me₂CO-EtOH mixture to give 2.90 g of compound 1g. ¹H NMR, 8: 1.20 (t, 3 H, Me); 1.30 (m, 2 H, CH₂); 1.55 (m, 2 H, CH₂); 3.10 (m, 4 H, CH₂NCH₂); 3.40 (s, 3 H, OCH₃); 3.60 (m, 2 H, CH₂O); 4.00 (m, 1 H, CHOH)

Compounds 1a—f,h,i were prepared in a similar way. Their 1H NMR spectra corresponded to those reported in the literature. 1

Condensation of 2,3-epoxy-1-ethoxypropane with potassium N-methylsulfamate in anhydrous DMSO (1b). 2,3-Epoxy-1-ethoxypropane (1.33 g, 13 mmol) was added to a solution of potassium N-methylsulfamate (1.5 g, 10 mmol) in 10 mL of anhydrous DMSO. The mixture was stirred for 8 h at 115 °C and concentrated using a rotary evaporator with heating on an oil bath. The residue was washed with ether and extracted with a hot EtOH—Me₂CO mixture to remove the remaining N-methylsulfamate. The extract was concentrated on a rotary evaporator, and the residue was recrystallized from

a EtOH—Et₂O mixture to give 2.06 g of potassium 3-ethoxypropyl-2-hydroxy-N-methylsulfamate (1h).

Synthesis of potassium 2-hydroxy-3-methoxypropyl-N-methylsulfamate (1a) from potassium 3-chloro-2-hydroxypropyl-N-methylsulfamate. Potassium 3-chloro-2-hydroxypropyl-N-methylsulfamate (2.41 g, 10 mmol) was added to a solution of KOH (0.56 g, 10 mmol) in 5 mL of anhydrous methanol. The mixture was kept for 14 h at 100 °C, neutralized to pH 7.0, and concentrated on a rotary evaporator. The residue was extracted with a hot EtOH—Me₂CO mixture, and the extract was concentrated on a rotary evaporator to give 1.66 g of potassium 2-hydroxy-3-methoxypropyl-N-methylsulfamate (1a). Compounds 1b,e were prepared in a similar way.

3-Ethoxypropyl-2-nitroxy-N-methylnitramine (4b). Concentrated H_3SO_4 (1.3 mL) was added at -10 °C to furning HNO_3 (6.5 mL), and then, at -13 to -17 °C, potassium 3-ethoxypropyl-2-hydroxy-N-methylsulfamate (1.00 g) was gradually added. The mixture was stirred at -13 to -17 °C for an additional 35 min and poured into a mixture of water and ice, and the product was extracted with MeCOOEt (3×10 mL). The extract was washed with a solution of sodium carbonate to pH \approx 11 and then with water, and concentrated on a rotary evaporator to give 0.65 g of product 4b. Compound 4c was prepared in a similar way.

3-Methoxy-2-nitroxypropyl-N-methylnitramine (4a). Fuming HNO₃ (2.78 mL) was gradually added to (MeCO)₂O (9.72 mL) at 0-6 °C. To the resulting solution, potassium 2-hydroxy-3-methoxypropyl-N-methylsulfamate (2.00 g) was gradually added at the same temperature; the mixture was stirred for 1 h at 0-8 °C and poured into a mixture of water and ice, and the product was extracted with MeCOOEt (3×13 mL). The extract was washed with a solution of sodium carbonate to pH \approx 11, and then with water, and concentrated on a rotary evaporator to give 1.25 g of 3-methoxy-2-nitroxypropyl-N-methylnitramine (4a). Compounds 4b—i were prepared in a similar way.

References

- V. A. Tartakovsky, A. S. Ermakov, N. V. Sigai, O. N. Varfolomeeva, and E. Yu. Kulikova, Izv. Akad. Nauk, Ser. Khim., 1994, 1063 [Russ. Chem. Bull., 1994, 43, 999 (Engl. Transl.)].
- A. S. Ermakov, S. A. Serkov, and Yu. A. Strelenko, *Izv. Akad. Nauk, Ser. Khim.*, 1994, 2041 [Russ. Chem. Bull., 1994, 43, 1930 (Engl. Transl.)].

Received March 11, 1997; in revised form April 11, 1997